

Brunel Innovation Centre


Evaluation of NDT techniques for the detection of kissing bond defects in composite joints

Tat Hean Gan , Jamil Kanfoud, Srinath Ramagiri Brunel University, Kingston Ln, London, Uxbridge UB8 3PH

Angelos Christopoulos, George Kanterakis, Konstantinos Kitsianos GMI Aero SAS, 13 Rue Georges Auric Porte 410, 75019 Paris, France

Pratik Shukla Coventry University, School of Mechanical Aerospace and Automotive Engineering, Coventry, CV1 5FB,United Kingdom

Georgios Liaptsis, Jonathan Laidler TWI Ltd, Ferrous Road, Riverside Park, Middlesbrough, TS2 1DJ

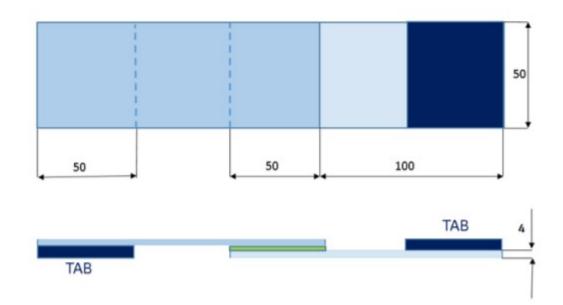
Contents

- 1. Introduction
- 2. Kissing bond manufacturing procedure
- 3. NDT techniques for kissing bond defect detection
 - 1. Guided wave NDT
 - 2. Laser shock tests
 - 3. High frequency C-scan
 - 4. Computed tomography
- 4. Conclusion

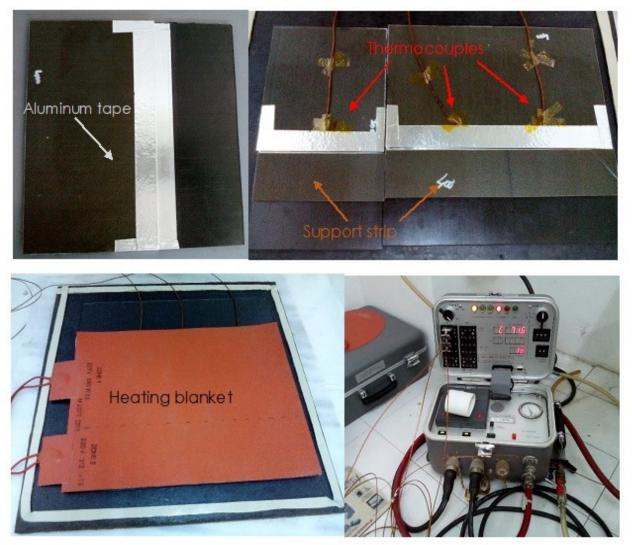
1. Introduction

- Detection of kissing bond defects in bonded joints is difficult
- The defects are zero volume disbands, offer zero shear strength
- Impossible to detect using classical NDT techniques
- Only method is the destructive testing (not suitable for industry)
- Advanced NDT techniques have shown some degree of detection
- A protocol is made to create bonded joints with kissing bonds. It is confirmed using mechanical testing.
- Advanced NDT methods namely (i) Guided waves (ii) Laser shock (iii) High freq C-scan (iv) CT scan are used in this work

Material Used


twenty (20) plies of the HexPly M21/IMA prepreg

1	M21EV/IMA	0°		
2	M21EV/IMA	+45°		
3	M21EV/IMA	0°.		
4	M21EV/IMA	-45°		
5	M21EV/IMA	0°		
6	M21EV/IMA	90°		
7	M21EV/IMA	0°		
8	M21EV/IMA	+45°		
9	M21EV/IMA	0°		
10	M21EV/IMA	-45°		
11	M21EV/IMA	-45°		
12	M21EV/IMA	0°		
13	M21EV/IMA	+45°		
14	M21EV/IMA	0°		
15	M21EV/IMA	90°		
16	M21EV/IMA	0°	Nha Of alles	Orientation
17	M21EV/IMA	-45°	Nbr. Of plies	
18	M21EV/IMA	0°	10	0°
			2	90°
19	M21EV/IMA	+45°	4	+45°
20	M21EV/IMA	0°	4	-45°

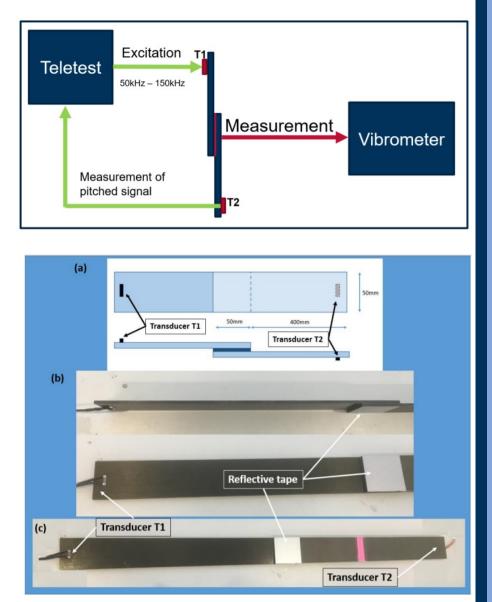

Test sample: Lap joint

- ISO 4587 standard is followed to create test samples
- 2 reference samples and 4 samples with defects are created.
- Sample dimensions are given below

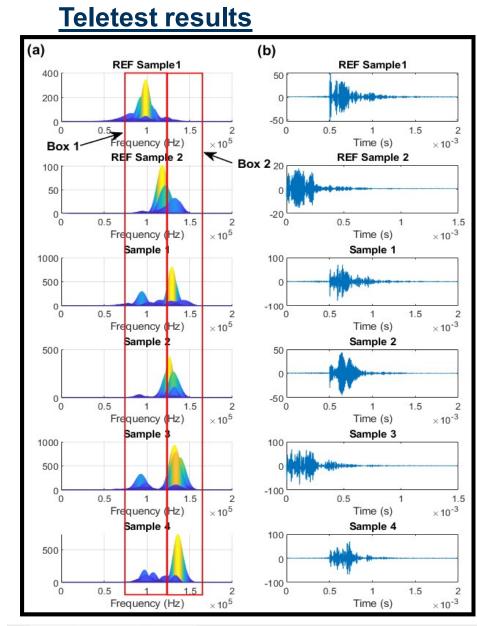
Bonded joint preparation:

Bonded joint preparation:

- composite plates are bonded together using an adhesive film and by applying pressure and heat in autoclave oven
- bonding is done using aeronautical grade adhesive film FM 300M
- cure cycle is 177°C for 60 min
- Defective samples are created by contaminating the bonded area using Lithium Grease (WD40 or similar) as contamination.



Guided waves NDT:


- Test samples in the picture
- Transducer: ASS-3000-0070-
 - B Fuzz Button Piezo Element & Bonded Face

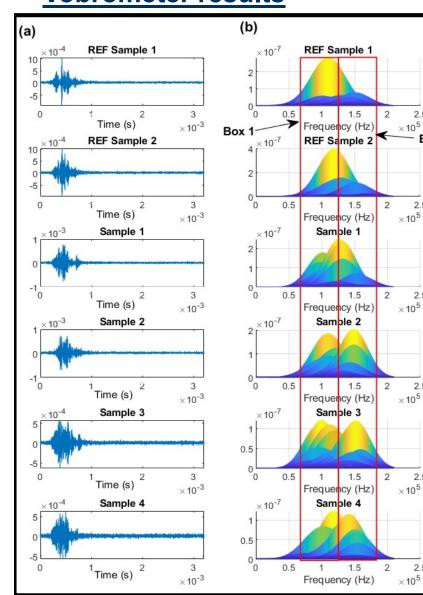
Plate

- Equipment: TELETEST Mk4, Laser vibrometer of 2MHz
- I/P frequency: 50kHz to 150kHz

- There is a frequency shift
- Freq of max amplitudes lie below 125kHz for ref samples
- Freq of max amplitudes lie above 125kHz for samples with defects
- The defects can be identified using guided waves

2.5

2.5


2.5

2.5

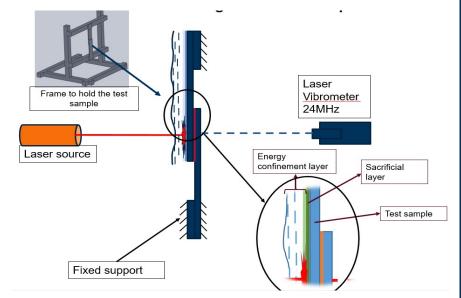
2.5

2.5

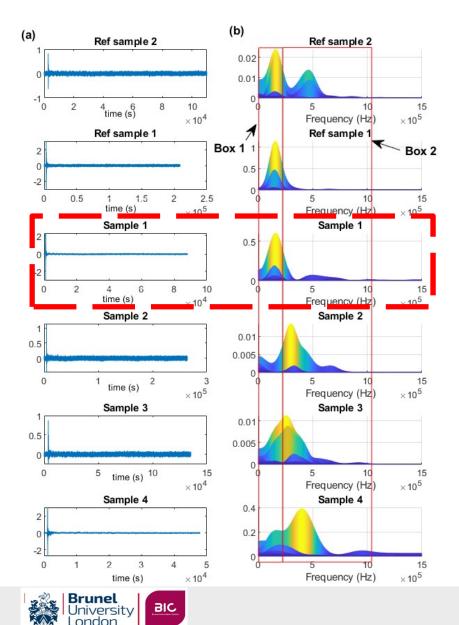
Box 2

Vobrometer results

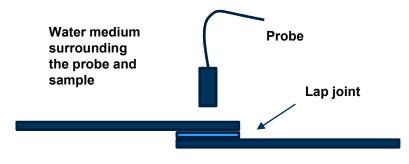
- There is a frequency shift
- Freq of max amplitudes lie below 125kHz for ref samples
- Freq of max amplitudes lie above 125kHz for samples with defects
- The defects can be identified • using guided waves
- This is a validation of guided wave results

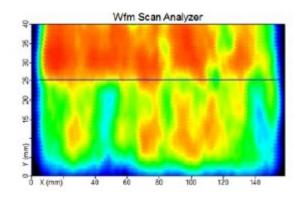


Laser shock tests:


- Laser type: pulsed Nd:Yag laser of 1064nm, 2.7J energy, 10ns
- Laser vibrometer of 24MHz is used
- Each samples is subjected to a single laser pulse for
 - measurement
- Back surface velocity is
 measured for defect

detection

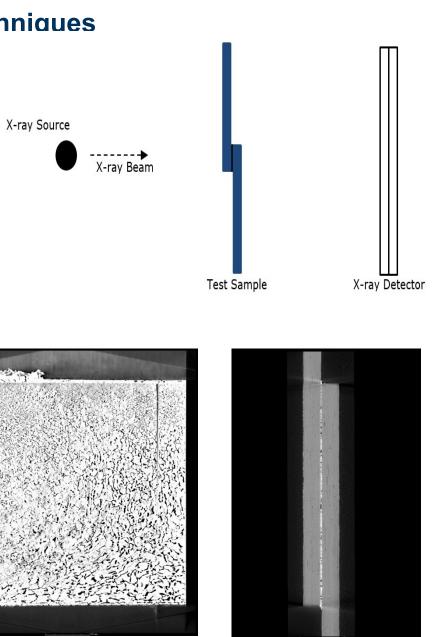

Laser shock tests:



- There is a frequency shift
- Freq of max amplitudes lie below 250kHz for ref samples
- Freq of max amplitudes lie above 250kHz for samples with defects
- The defects can be identified using laser shock
- There is a degree of failure to detect (see Sample 1)

High freq C-scan:

- Probes of 5MHz, 10MHz and 15MHz are used in Pulseecho mode.
- Various configuration are under testing for successful detection of defects



Computed Tomography:

- Results of CT-scan are shown in the pictures below.
- There is a sign of detection of defects.
- Results need validation.

4. Conclusions

- Bonded joints with kissing bond defect have been successfully created and a protocol for the same is made
- Both guided wave NDT and laser shock test are conducted and the results are promising.
- A consistent frequency shift is observed which differentiates a bonded joint with kissing bonds and without kissing bonds
- High frequency C-scan and CT-scan are under trials
- CT-scan has shown some signs of defect detection which has to be validated

Thank you

